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Random Walk on a Disordered 
Directed Bethe Lattice 
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The random walk of a particle on a directed Bethe lattice of constant coor- 
dinance Z is examined in the case of random hopping rates. As a result, the 
higher the coordinance, the narrower the regions of anomalous drift and 
diffusion. The annealed and quenched mean square dispersions are calculated in 
all dynamical phases. In opposition to the one-dimensional (Z=2)  case, the 
annealed and quenched mean quadratic dispersions are shown to be identical in 
all phases. 
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1. I N T R O D U C T I O N  

The p roper t i e s  of  the r a n d o m  walk  of  a par t ic le  o n  a d i rec ted  cha in  wi th  
r a n d o m  h o p p i n g  rates  are  n o w  well k n o w n .  (1-3) Th i s  m o d e l  is comple te ly  

so lvable  ana ly t ica l ly .  The  m a i n  r ea son  for this lies in  the fact tha t  there 
exists in  such a la t t ice  a k i n d  of o rde r  r e l a t ion  be tween  successively visi ted 

sites. Indeed ,  in  a o n e - d i m e n s i o n a l  d i rec ted  latt ice,  a par t ic le  loca ted  
in i t ia l ly  at  site 0 can  on ly  go f rom site 0 to site 1, a n d  la ter  f rom site n to 

its r ight  n e a r e s t - n e i g h b o r  site n + 1. O n e  thus  can  easi ly define a f i l ia t ion 
re la t ion  be tween  sites, each site h a v i n g  one  " son"  a n d  one  "father ."  

A s imi la r  f i l ia t ion r e l a t ion  does exist o n  a d i rec ted  Bethe lat t ice or  

inf ini te  Cay ley  tree. 4 Th e  di rec ted  Bethe  la t t ice  is def ined as follows: in  this 
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lattice, a particle located initially at site 0 can only go from site 0 to one of 
its Z -  1 nearest neighbors, and later from site n, e to one of the Z -  1 sites 
n +  1, fii(s). [The index n is a shell index and n, c~ denotes any site of this 
shell. The index fli(c0 varies from 0 to Z - 1 . ]  The nearest neighbors of 
site 0 form the n = 1 shell, the second-nearest neighbors of site 0 form the 
n = 2 shell,.... In this directed lattice also, one can define a filiation relation 
between sites, each site having Z -  1 "sons" and one "father." The existence 
of this filiation relation is another aspect of the absence of closed cycles on 
the lattice. The case Z = 2 is just the one-dimensional chain (see Fig. 1). 

Note that the coordinance of the Bethe lattice is Z everywhere, except 
at the origin, where it is Z -  1. In graph terminology, one is considering a 
rooted infinite Cayley tree. (6) Site0 constitutes a kind of defect in the 
lattice, since it has no "father." However, in a directed Bethe lattice, any 
site has Z -  1 "sons" and site 0 is no exception in this respect. 

In the present paper, we shall be concerned with the problem of the 
random walk of a particle on such a directed Bethe lattice with random 
hopping rates. The techniques which allowed for the treatment on a linear 
directed chain are still applicable and actually lead to a complete analytical 
solution. 

The paper is organized as follows. In Section 2, we describe the model 
and solve it in the case of nonrandom hopping rates. In Section 3, we con- 
sider random hopping rates and calculate the average over disorder of the 
mean particle position. In Section 4, we calculate the so-called "quenched" 
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Fig. 1. Schematic picture of the filiation in the directed Bethe lattice. We have indicated the 
notations used in the text. 
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and "annealed ''5 (as defined in ref. 7) mean quadratic dispersions of the 
particle, the former quantity being much more difficult to obtain. As a 
result, the higher the coordinance, the narrower the regions of anomalous 
drift and diffusion. In contradistinction to the one-dimensional case, the 
annealed (or average) and quenched mean quadratic dispersions are 
identical in all dynamical phases. 

2. T H E  M O D E L  A N D  ITS S O L U T I O N  IN T H E  O R D E R E D  C A S E  

We consider the master equation describing the random walk of a 
particle on the directed Bethe lattice. If p~,~(t) denotes the probability for 
the particle to be at site labeled n, c~ at time t ~> O, one has 

dPn,~ z -  1 
dt = WEn'~;~--l'~3Pn--l"(t)-- ~ WE"+I'~;"'~3P"'~(t)' n~>l (1) 

i = l  

In the above equation, Wc~ + 1,~,;~,~1 denotes the hopping rate from site n, 
c~ to one of its Z -  1 "sons" and Wt,,~;~_ i,~,3 denotes the hopping rate from 
the "father" of site n, ~ toward this latter site, Note that the "father" n - 1, 
of site n, e is defined in a unique way. Moreover, we have dropped for 
brevity the explicit dependence of ~ and fl~ upon ~. At time t = 0 the particle 
is assumed to be located on site n = 0. This site clearly has no "father" and 
Z -  1 "sons." For  it, the master equation simply reads 

dpo z -  1 
- - = -  Y~ wE~,~,~o~po(t) (2) 
dt i= 1 

Let us first assume that all the hopping rates take the same nonrandom 
value W. In such a case, the probability for the particle to be at a given site 
only depends on the shell index n. 

As usual in random walk problems, one performs a Laplace trans- 
formation of the master equations (1) and (2), which yields 

zP~(z)=WP. ~ ( z ) - ( z - 1 ) w P . ( z ) ,  n>~l (3) 
and 

z f  o ( z ) -  1 = - ( Z -  1) WPo(z)  (4) 

Equations (3) and (4) are trivially solvable. One gets 

1 W ( z + ( Z - 1 ) W w ) "  e . ( z ) = z + ( z _ l  ) , n>~o (5) 

s Note that the same quantity is called "average" quadratic dispersion in ref. 1. In the 
following, we shall refer to this quantity as to the "annealed dispersion." 
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These probabilities are correctly normalized. Indeed, since the shell of 
index n contains ( Z -  1)" sites, one easily verifies that 

( Z -  1)n p.(z) =-1 (6) 
Z 

n = 0  

The main physical quantities of interest in the random walk are the mean 
particle position and its mean quadratic dispersion. The mean particle posi- 
tion actually refers to the mean shell index, that is, to the mean number of 
steps that the particle has done since its departure from the origin. The 
actual number of sites in a given shell has to be taken into account, so that 
the mean particle position is defined as follows: 

x(t)= ~ n (Z-1) 'p , ( t )  (7) 
n = O  

In a similar way, one can define the mean second moment of the number 
of steps from the origin 

x2(t)= ~ n 2 ( z  - 1 ) ' p . ( t )  (s) 
n ~ 0  

The mean quadratic dispersion of the particle is defined as 

j x 2 ( t )  = x2(t) - x ( t )  2 (9) 

The Laplace transforms of the mean particle position and of its mean 
second moment, x~(z) and x2(z), are easily obtained from Eq. (5). One gets 

W ( Z - 1 )  [ W ( Z -  1)] 2 W ( Z - 1 )  
x l ( z )  = z2 , x2(z)  = 2 z3 + z2 (10) 

from which one derives the time-dependent quantities 

x(t) = Vt, Ax2(t) = W ( Z -  1) t (11) 

The regime is a normal drift-diffusion one, with a velocity V given by 

V= W ( Z -  1) (12) 

and a diffusion coefficient given by 

V W ( Z - 1 )  
n 2 2 (13) 
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This result was to be expected, since the Z - 1  diffusion channels on each 
site are independent. Note that for Z = 2  the results for the one-dimen- 
sional case are trivially recovered. 

3. T H E  D I S O R D E R E D  D I R E C T E D  B E T H E  L A T T I C E  

We now solve the random walk equations (1) and (2) when the 
hopping rates are chosen independently at random in a given probability 
law p(W). We choose a gamma probability distribution of parameter/~ 

1 W u-  e_W/wcdW p(W) d W = ~ - ~ )  ~ ( W > 0 ,  /~>0) (14) 

Here Wc denotes a fixed cutoff frequency. 6 The smaller/~, the higher the 
probability to find a quasibroken link. (2'3) Therefore, one expects a slowing 
down of the motion when # is decreased toward 0+,  as in the corre- 
sponding one-dimensional situation. Indeed, decreasing the single 
parameter/~ allows one to go from weak to strong disorder. 

For  each configuration of disorder, one can consider the probability 
for the particle to be at a given site as well as its mean position and its 
mean quadratic dispersion. These latter quantities will be denoted by the 
same symbol ~ as in the preceding section. However, in the disordered 
case, these quantities are configuration-dependent and difficult to charac- 
terize. Thus we shall give the corresponding averages over disorder and 
analyze in due time the self-averaging properties. The average over disorder 
will be denoted in the following by the symbol < . . - ) .  

As in the ordered case, one performs a Laplace transformation of the 
master equations (1) and (2), which now yields 

Z - - I  

zP~,~(z)= Wr,,~;, , l,~]P,_l..r ~ W[,+~,r n~> 1 (15) 
i = 1  

and 
Z - - I  

z P o ( z ) -  1 = - ~ W[~,~i;o]Po(z ) (16) 
i = 1  

Equation (16) is still easy to handle, since it is a closed equation for Po(z). 
One gets 

1 
Po(z) - (17) 

z + Zf211 W~,~;0~ 

6 The cutoff function has been taken to be of an exponential form. On physical grounds, it is 
expected that the results at large times should be independent of the particular choice of this 
function. 
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3.1. The A verage  Probabi l i t ies  

A useful quantity is the average over disorder of Po(z) 

( P o ( Z ) ) =  Z _~_ Z Z  ~11 W[l,~i;0] 

A random quantity of central interest in this problem turns out to be the 
sum of all the hopping rates which link together the origin and its Z -  1 
"sons," that is, 

Z--1 
W~o= ~ Wc,,p,;oj (19) 

An analogous quantity W~,,~ can be defined for each site n,~. In the 
following, we shall denote it W" for short, except when the explicit site 
dependence will be needed for clarity. 

By rewriting 

(P0(z) } = z + (20) 

one obtains a formula analogous to the corresponding one on a one- 
dimensional directed lattice, (2'3) except for the replacement of W by W s. 

Since the gamma distribution is stable for the addition of random 
variables, W s is also distributed according to a gamma distribution, with 
the parameter m = ( Z -  1 )/~, 

l (Ws)m-  dW" 
P'(WS)dWS-F(m)kWc] e-W'/WC--Wc (WS>0, m > 0 )  (21) 

The Laplace transform of the probability for the particle to be at the 
origin will have the same expression as on a directed one-dimensional 
lattice, except for the replacement of/x by m = ( Z -  1) #. One gets 

Z m - I  / Z 
{Po(z) } = ~ eZ/WcF [1 - m, ) (22) 

wc \ 

where F is the incomplete gamma function. This yields the following 
asymptotic time behavior 

,n, t - , o o  (23) 

The Laplace transforms of the other probabilities of presence can then 
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be calculated step by step. For this purpose, it may be useful to rewrite the 
master equations (15) and (16) in the following way: 

zP.,~(z)= Wtn,~;n 1,./lP._~,~(Z)-- W~,~Pn,~(z), n>~ 1 (24) 

~eo(Z)- 1 = - W ; P o ( Z )  (251 

For any given configuration of the hopping rates, one can check that the 
probabilities are normalized, as required. Indeed, summing over the 
various sites gives, from Eqs. (24) and (25), 

( z - l ) "  ( z - 1 ) n  1 

z 

n = O  cr n = l  7 ~ 1  

( Z -  I) '~ 

- ~ W;,=P.,~(z) (26) 
n = O  c t = l  

which is obviously equal to zero. In Eq. (26), the sum on all sites of the 
shell of index n of the products of the hopping rates WE.,~;._~,~ by the 
probabilities P ._  1,~(z) has been rewritten as a sum on all sites of the shell 
of index n - 1  of the products of the hopping rates W,~_~,~, by the 
probabilities P ._  l,~(z). 

Before computing any average values, let us note that Eq. (24) 
displays that a site n, ~ is linked to its "father" n -  1, 7 via a hopping rate 
distributed according to the law (14), while it is linked to its "sons" 
n +  1, fli via a hopping rate distributed according t o  the law (21). The 
average values (P.,~(z)) are actually independent of ~ and can be easily 
computed. One gets 

{ (27) (e~(z))  = z+ w S / \ z +  w s /  

Here W is one of the statistically independent Z -  1 "components" of W s, 
so that 

W 

3.2. The Average over Disorder of  the Mean Particle Position 

We now calculate the average over disorder of the mean particle 
position, as defined by 

(x(t)) = ~ n (Z -  1)" (p~,~(t)) (29) 
n ~ O  
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Using Eq. (27), one obtains the Laplace transform (x l ( z ) )  of this 
quantity, 

1 1 
= - (30) (x l ( z ) )  z2(1/(z+WS))  z 

The asymptotic behavior of (x ( t ) )  is easily obtained. When m =  ( Z - 1 ) #  
is smaller than 1, one has an anomalous drift behavior, characterized by 

sin rcm 
(x ( t ) )  - - ( W ~ . t )  m, 0 < m < l  (31) 

7~m 

When m is larger than 1, the drift regime is normal, with a finite velocity 

( x ( t ) ) ~ ( m - 1 )  Wct, m > l  (32) 

As far as the position is concerned, one recovers the one-dimensional 
behavior, with /~ changed into ( Z - 1 ) / ~ .  In this respect, the Bethe lattice 
may be considered as quasi-one-dimensional. This can be traced back to 
the fact that there is only one way to go from the origin to any other site. 
For a given #, the width of the anomalous phase decreases as the 
coordinance Z increases. 

4. THE MEAN QUADRATIC DISPERSION OF THE PARTICLE 

The average over disorder of the mean quadratic dispersion of the 
particle may be defined in two different ways. One can define both the 
quenched dispersion 

(dX2(t))Q= (x2(t))  - ( x ( ~  2) (33) 

and the annealed one 

(-~7-(t) ) A = (x2(t) ) - ( x ( t ) )  2 (34) 

The knowledge of the average probabilities is sufficient to obtain the 
annealed dispersion, but not the quenched one. While the annealed disper- 
sion characterizes the spread of a configuration-averaged packet, the 
quenched dispersion characterizes the spread of a packet in a single 
environment, the average over disorder being only taken at the end of the 
calculation. (7) 

4.1. Why Two Different Definitions of the 
Mean Quadratic Dispersion 

Clearly, the above question only makes sense in a disordered medium. 
In the normal diffusion regime, the reason which allows (Ax2(t))A 
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to be different from (Ax2(t))o_ is the sample-to-sample fluctuation of the 
correction to the leading behavior of the mean particle position x(t). It is 
expected that, when diffusion is normal, this fluctuation exists only in 
one dimension and when a global bias is present, while, in more than one 
dimension, ( Ax2( t ) ) A = ( Ax2( ~ ) Q. (7) 

When diffusion is anomalous, the spread for a given configuration of 
disorder and the average spread can have a very different behavior in the 
presence of a bias. (7) 

The present model, since it is directed, is clearly biased. However, the 
question of the effective "dimension" of the Bethe lattice is not so clear. The 
answer may depend on the particular property under study. (4's'8) We have 
shown in Section 3 that the average over disorder of the mean particle 
position behaves like the corresponding one-dimensional quantity, except 
for the replacement of the parameter ~ characterizing the distribution of 
the hopping rates by m = ( Z - 1 ) # .  The replacement of # by m leads to 
a reduced width of the anomalous phase of drift as compared to the 
one-dimensional case. One could then be led to think of the directed Bethe 
lattice as one-dimensional for the above-quoted property. But, where this 
lattice truly one-dimensional, one could expect different behaviors for the 
annealed and quenched mean quadratic dispersions of the particle. As a 
matter of fact, we shall show that this is not the case. In the directed Bethe 
lattice, (Ax2(t))o a n d  (~x2(t))A are actually identical in all dynamical 
phases, anomalous or not. This identity in the normal regime of (Ax2(t))e 
and of (Ax2(t))A is a property also expected for higher-dimensional 
Euclidean lattices. (7)'7 

4.2. The Annealed Average over Disorder of the 
Mean  Quadrat ic  Dispersion of the Part icle 

One first calculates the average over disorder of the mean second 
moment of the particle position, as defined by 

(xZ(t)) = L n2( Z -  1)" (P.(t)) (35) 
n=O 

Using Eq. (27), one obtains the Laplace transform (Xz(Z)) of this quan- 
tity, 

2 3 1 
(x2(z))=z3(1/(z+ WS)) 2 z2(1/(z+ W')) F-z (36) 

7 In a recent calculation, (9) we have shown that this identity is true in any phase for a directed 
walk on a d-dimensional (d~> 2) Euclidean lattice. 
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Combining the asymptotic behaviors of (x2(t)) [deduced from Eq. (36)] 
and of ( x ( t i )  [deduced from Eq, (30)], one gets the asymptotic behavior 
of (Ax2(t)),~. The results only depend on the value of m = ( Z - 1 ) p .  
When m is smaller than 1, one has an anomalous diffusion behavior, 
characterized by 

1 [ r(2m _+_1) 
(AX2(t))A F(2m+ 1 ) [ F ( 1 - m ) ]  2L2 IF (m+ 1)]2J (W~t)2m (37) 

When 1 < m < 2 ,  one also has an anomalous diffusion behavior, but 
characterized by 

(Axa(t))A ~2  (m-- 1)  3 (We; t )3_  m (38) 
(2 -- m)(3 -- m) 

When m is larger than 2, the diffusion regime is normal, with a finite 
diffusion coefficient 

(Ax2(t) ) A .. rn(rn- 1) 
m -  2 Wct (39) 

The conclusion for the diffusion is the same as for the velocity: here also 
one recovers a one-dimensional-like behavior. For a given #, the width of 
the anomalous phase decreases as the coordinance Z increases. 

4.3. The Functional Relation for xl(z) 

As in the one-dimensional directed lattice, a useful tool for calculating 
(Ax;( t ) )~ is the so-called functional relation obeyed by xl(z). (2'3/For any 
given configuration of the lattice 

( Z -  1p 

xl(z)= n ~ P.,=(z) (40) 
n=O c ~ l  

In the master equation (15), the sum on all sites of the shell of index n of 
the products of the hopping rates Wr.,~;n-l,~ by the probabilities 
P~_~,~(z) can be rewritten as a sum on all sites of the shell of index n - 1  
of the products of the hopping rates W~_ 1,~ by the probabilities P ._  1,~(z). 
By taking into acco,unt the resulting equations (24) and (25), and using the 
same trick as in deriving Eq. (26), one gets 

(Z-- 1)n I 

zxl(z) = n ~ W~_ 1,~ P . -  l,~(z) 
n--1 7=1  

(Z-- 1) n 

- n ~ w;,~e.,~(z) (41) 
n = 0  ~ = 1  
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or simply 

ZXm(Z)= ~ lz-~)" Z W:,~P,,,~(z) (42) 
n=O c~=l 

By singling out the term corresponding to the first site, one can rewrite 
Eq. (42) under the form of a functional relation, 

] ZXl(0; z) W~ 1 ~ W[1,~;o] zxl(1, c~; z) (43) 
.7+ W ;  =1 W~ 

Note that, in the above equation, x~(0; z) is calculated for a particle which, 
at t = 0, is located on site n = 0, while xt(1, cq z) is calculated for a particle 
which, at t = 0, is located on site 1, c~. Since site 0 constitutes no exception 
in the directed Bethe lattice as long as the "sons" are considered, these two 
quantities will be equivalent once averages over disorder are taken. 

The quenched average (Ax2(t))Q can be obtained by a Laplace inver- 
sion of the quantity 

(~2(z)  ) = ( x 2 ( z ) - ( x l  * x,)(z)) (44) 

where the symbol �9 denotes the convolution product. 
As in the one-dimensional case, the functional relation will serve as a 

basis for calculating the average over disorder of the product x~(z) xi(z'). 
One can remark that this functional relation presents some analogies 

with the recursion relation obtained in refs. 10 and 11 for the partition 
function of a directed polymer on a tree. These analogies are of course 
based on the underlying tree structure in both problems. 

4 .4 .  C a l c u l a t i o n  o f  (xl(z)Xl(Z')) 
By applying twice the functional relation (43), it is actually possible to 

calculate (xl(z)xl(z')). One begins by writing 

" " W~176 (1, ~; z) _ Wo Wo 1 ~ W; zxl zz'x~(O;z)x~(O;z') z +  w~;z '+ W;  =~ 

x I ~lWo'z----"~ W~ (45) 

At this stage, the calculation in the Bethe lattice differs from the one in the 
one-dimensional directed chain. When c~ is not equal to fl, the two quan- 
tities x~(1, e; z) and x~(1, fl; z') are uncorrelated. This direct effect of the 
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branching of the lattice clearly could not happen in one dimension. By 
taking the configuration average of Eq. (45), one gets 

zz'(x~(O; z) x~(O; z')) 

z + W S  z , - 4  s 

+z(x~(z))(z-1) z+ W,z'+~v" 

W W" 
+ z'(x~(z') ) ( Z - 1 )  (z, + W~z + ~V s) 

+zz'(x,(1, ~x; z) xl(1, fi; z ' ) )  W[,,~;0] ; (46) 
~ =1  f l = l  Z-I-W; z' -Jf- W 6 / 

In the above equation, some indexes have been dropped when there was no 
ambiguity. W denotes one of the Z - 1  "components" of W s. 

Let us now successively examine the different averaged quantities which 
are involved in Eq. (46). First, one easily shows that 

I W'~ W~ ) z2R(z)-z'2R(z') 
z+W'z'-+~V" = 1 -  z - z '  (47) 

where for short (1) 
R(z)- z + W s (48) 

In the same way, taking into account Eq. (28), one shows that the second 
term in the right-hand side of Eq. (46) is given by 

> [ z2R(z!- z'2R(z')] 
z - z' J (49) 

or, using expression (30) for (xl(z)), 

z-Z~7 J (50) 

The third term of the right-hand side of Eq.(45) is obtained by 
changing z into z' in Eq. (50). Finally, the fourth term of Eq. (46) has to 
be carefully analyzed, since it brings in the effect of the branching of the 
lattice. This sum of ( Z -  1)2 terms contains Z -  I "diagonal" terms (with 
~=fl)  and ( Z - 1 ) ( Z - 2 ) " o f f - d i a g o n a l "  terms (with c~vafi). If W and 
W' denote two different "components" of W', the two averages 
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( W2/[(z + WS)(z ' + W ' ) ] )  and ( WW'/[(z + WS)(z ' + WS)] ) have to be 
computed. One can show that a ratio independent of z does exist between 
these two quantities. For instance, with the gamma distribution laws (14) 
for W and W' and (21) for W', one has 

(z + W')(z' + W') ,u (z + Wq(z' + W') 

(details are provided in the Appendix). As a result 

\ ( z + W ' ) ( z ' + W  s) = ( Z - 1 ) ( I + K )  ! z -~- -  J (52) 

( ww'  ) ,~ 1 
(z + W~)(z' + W e) = ~ + I ( Z - 1 ) ( I + K )  

x [ l _Z2R(z)- z';R(z')] 
)--~_ )-7 J (53) 

where we have set 

K = ( z - 2 )  ~* /~ + 1 (54) 

It clearly appears from the Appendix that the explicit form of K depends 
on the choice of the cutoff function. However, it is readily shown that, for 
any choice of p(W), K could be a function of z, which does not vanish for 
z - .  0, as well as 1 + K. The fourth term in Eq. (46) is thus given by 

zz' (XI( 1, c~; z)Xl( 1, c~; z ' ))  1-+ K I 1 -  z2R(z)-~-z --z/-ZR(Z')z' Jl 

K 1 
- JLz'R(z ) z ~ j (55) 

Since the two averages (xl(O; z) x~(0; z ' ) )  and (x,(1, c~; z) x1(1, e; z ' ))  are 
identical, one gets as a final expression to be analyzed for (xl(z)x~(z '))  

z - z  ]] 

= 1-- z - -z  J(zR(z)-t z'R(z') 1 

+ [ i _1IF i_ 
]-7-K Lz-R(z)JLzR(z') 1]} (56) 
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4.5. Calculation of the Quenched Average ( A x Z ( t ) ) a  

In order to obtain (Ax2(t))o, it remains first to derive from Eq. (56) 
the small-z behavior of ((x~ ,x~)(z)), to combine it with the small-z 
behavior of (x2(z)) [deduced from Eq. (36)], and finally to resort to 
inverse Laplace transformation. One is thus led to study the integral in the 
complex-z' plane of 

(x~(z') x,(z-z')) 

1 1 , 1  1 
- z'(z-z') ~ - ~  (z-z')R(z-z') 

I + K  [ 1 ,  1 

+z'(z-z'~) ~ (z-~')R(z-z') 

, ] 
+ Kz'(z- z') R(z') R(z- z') 

I z'2R(z')-(z-z')2 R(z-z'!l-1 
x K+ 2 z ' - z  

1 + z'(z-z') R(z') R(z-z'i 

(57) 

The integration line is parallel to the imaginary axis and chosen so as to 
ensure both Re z ' >  0 and R e ( z -  z ' )>  0. We have now to resort to the con- 
ventional complex integration techniques. As usual, we deform the initial 
contour so as to include the cut of the multivalued function R(z) defined 
along the semiaxis Re z <~ 0. 

The three eases m < 1, 1 < m < 2, and m > 2 will have to be separately 
analyzed, since the two first terms at small z of R(z) are different in these 
three cases. From formula (22), one gets 

R(z) ~ F(1 - m) z " -  2, m < 1 (58) 
w7 

1 F(1 -m)  zm_ 1 l < m < 2  (59) 
R(z)~ ( m -  1) Wc -~ W ~  ' 

1 1 z 

R ( z ) ~ ( m - 1 ) W e  ( m - 1 ) ( m - 2 ) W 2 c  ' 
m > 2  (60) 

The first term [let us call it T~(z) for short] in the right-hand side of 
Eq. (57) is very easily computed without resorting to complex integration, 
since it can be rewritten in the equivalent form 

Tl(Z)= (1 + K)[ !  z 22~t~tz,_l'~-K(xl) * (xl)(z)  (61) 
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After Laplace inversion, this gives a contribution 

K (Wct)  2m 

Tl(t)~ IF(1 - - m ) ]  2 [ F ( m +  1)] 2, 

T~(t),.~ - K i  ( m -  1) 2 (W~t)2- 2 
( m  - -  1 )3 

( 2 -  m)(3 - m )  

Tl(t) to (x(t)2), 

m < l  

(62) 

W,.t)3--m], l < m < 2  

(63) 

T~(t)~ - K ( m -  1) 2 (W~t)2- 2(m - 1) Wct-  2K ( m -  
1) 2 

m - 2  
- -  Wet, m > 2  

(64) 

w]here we used the same symbol for the function and its Laplace transform. 
Let us now examine the second term in the right-hand side of Eq. (57), 

which we call here T~(z) for short. Since K is a strictly positive constant in 
a Bethe lattice of coordinance higher than 2 (we exclude the one-dimen- 
sional chain), no pole tending toward zero with z can arise from the 
denominator 

K+ 
z ' 2 R ( z  ')  - ( z  - z ' )  2 R ( z  - z ' )  

2z' - z 

whatever the value of m. The leading contributions thus come from the cut 
of the multivalued function R(z). After a somewhat lengthy calculation, one 
gets the behavior at small z of T2(z) 
inversion, 

r2(t) 
I + K  (W,.t) 2m 

[ / ' ( l  - -m)]  2 [F(m + 1)] 2' 

T2(t)'-- (1 +K) I(m - 1) 2 (Wet)2-- 2 

and, subsequently, after Laplace 

(m - 1 )3 1 
( 2 - m ) ( 3 - m )  (Wct)3-'~ ' 

T2(t),-, (1 +K)(m-  1) 2 (Wet)2 + 2(1 + K ) - -  

Finally 

(m - 1)2 
Wc t, 

(m - 2) 

m < l  

(65) 

l < m < 2  

(66) 

m > 2  

(67) 

( a x 2 ( t ) ) Q  = ( x 2 ( t ) )  - [ r l ( t )  + f 2 ( t ) ]  (68) 

As a result, the quenched average of the mean quadratic dispersion of 
the particle does not involve the parameter K, the only relevant parameter 

822/65/3-4-19 
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being m. This was indeed expected, since the precise form of K depends on 
the cutoff function. 

The results are as follows. When m is smaller than 1, the diffusion 
�9 regime is anomalous and characterized by 

1 [ /'(2m + 1) ] 
(3xZ()t))Q F(2m+l)[F( l_m)]2  2 [-F-~-+-l~zj(Wet)zm (69) 

When l < m < 2 ,  
characterized by 

one also has an anomalous diffusion behavior, but 

(m - 1 )3 
(Ax2(t))Q ~ 2  ( 2 - - - m - ~ m ) ( W e t ) 3  m (70) 

When m is larger than 2, the diffusion regime is normal, with a finite 
diffusion coefficient 

(Ax2(t)) ~ m(m-1)  
rn-  2 Wet (71) 

As a conclusion, the annealed and quenched averages of the mean 
square dispersion of the particle are identical in all dynamical phases, 
anomalous or not. Indeed the dominant terms in (x(t) 2) are due to 
particles which take different trajectories on the Bethe lattice. In these 
dominant terms, the random variables of interest are therefore inde- 
pendent, which in turn ensures the identity between the annealed and 
quenched averages of the mean quadratic dispersion of the particle. As 
compared to what happens on a directed one-dimensional chain, (2'3) this 
is clearly an effect of the branching character of the l~ethe lattice. The 
extension to a d-dimensional Euclidean lattice has been achieved in ref. 9. 

Note that this result can also be obtained by directly considering 
the Laplace transform ( x l ( z ' ) x l ( z - z ' ) ) -  ( X I ( Z t ) ) ( X l ( Z - - Z ' ) )  of the 
quantity (x--~2) - ( x ( t ) )  2 and showing that it leads to a subdominant 
contribution. 

As a final remark, let us note that the identity between the annealed 
and quenched mean quadratic dispersions of the particle implies that the 
mean position x(t) is self-averaging at large times in all dynamical phases, 
in contradistinction to the case Z = 2. (2,3) In other words, in all phases and 
at large times, the difference (X(t) 2 ) - (x(t))2 is subdominant. One could 
ask whether the diffusion front itself is self-averaging. This would require 
the knowledge of the self-averaging properties of higher cumulants, which 
remains an open problem. 
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5.  C O N C L U S I O N  

We have extended to a Bethe lattice of constant coordinance Z the 
directed model of a random walk. This was rendered possible by the 
tiliation relation which exists between the sites of a directed Bethe lattice. 

The results can be summarized as follows. First, the drift and diffusion 
properties of the particle present some analogies with the corresponding 
properties of a particle on a directed chain. When quasibroken links 
become sufficiently numerous, the motion of the particle is slowed down 
and phases of anomalous drift and diffusion appear. However, the higher 
the coordinance, the narrower the regions of anomalous drift and diffusion. 

Second, and this is in marked opposition with the case of a one- 
dimensional lattice, the annealed and quenched mean quadratic dispersions 
of the particle are identical in all dynamical phases. This may be traced 
back to the fact that, for Z >  2, the number of visited sites grows rapidly 
(here exponentially) with time, instead of linearly in the one-dimensional 
case. 

Some more light can be shed on the importance of the branching of 
the lattice by considering the average over disorder of (Po(z)) .  In a one- 
dimensional lattice, the two first terms at small z correspond in the normal 
drift and diffusion regime to an expansion of the form 

1 2zD 
(Po(z) )  V V 3 (72) 

where V and D are, respectively, the drift velocity and the quenched 
diffusion coefficient of the particle. With the choice (14) of the probability 
distribution of the hopping rates, one gets, in a one-dimensional lattice 

(# - 1 )2 
V= (/2- l) We., D Wc~ (73) 

2(,u - 2) 

If the same was true for a Bethe lattice, that is, if V and D could be 
extracted from (Po(z))  alone, one would have 

V = ( m - 1 )  We, D ( m - l ) 2  Wc (74) 
2 ( m - 2 )  

The value (74) for the velocity is the correct one [-see formula (32)]. 
However, the value (74) for the diffusion coefficient is not exact, as dis- 
played by formulas (39) and (71). This clearly shows that, when Z is higher 
than 2, it is no longer possible to extract the proper diffusion coefficient 
from the knowledge of (Po(z ) )  alone. This most probably has to be 
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related-to the fact that a particle initially located at site 0 has many 
PoSsible spatially different ways to achieve its trajectory. In particular, this 
is reflected by the fact that the value of D extracted from (Po(z)) is smaller 
than the exact one. Finally, let us remark that, when m ~> 2, D "~ V/2, as in 
the ordered case. 

One might think that these effects of the branching may persist on 
higher-dimensional disordered Euclidean lattices. Actually, as noted above, 
we have shown that they persist for a directed walk on a d-dimensional 
(d>~2) Euclidean lattice. ~ A complete study of random walks in such 
lattices would obviously be much more involved, mainly due to the 
presence of closed cycles and  of correlations difficult to take properly into 
a c c o u n t .  

APPENDIX  

Let us here demonstrate that a ratio independent of z does 
exist between the two averages (W2/[(z+ WS)(z '+ W ' ) ] )  and 
(WW'/[(z+ W~)(z '+ W~)]) ,  where W and W' denote two different 
"components" of W ~. First, let us rewrite these quantities as 

W s W 2 W 2 

((z+WS)(z'+WS)l z'-zl I(_z+_~l (A1) 

and 

(z+WS)(z'+W ") z ' - z L \ z + W ' /  \ z  + w ' / 3  
(A2) 

One has 
W 2 

Z §  m 1 § . . .  § W z _  1 

- [ F ( # ) ] z _  x -'- dxl ""dxz_l 

x x -X . - i  
�9 . . X Z _  1 - - ( X I +  . , .  + X Z _ I )  

• e 
z / W c -l- X l - ~- . . ,  -Jv X z _ 1 

(A3) 

where xi stands for the ratio Wi/Wc. This multiple integral reduces to a 
simple one, that is, 

- ~  F(#) dx (1 +x) z ' - ' + 2  (A4) 
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l!n the same way one has 

\ z  + W ' / -  W~ 

[ r ( # ) ] z -  1 

X " ' ' X z - I  C-(Xt+ .-. +xz-~) 
z/W~ + xl + ... + Xz-1 

(A5) 

This multiple integral also reduces to a simple one, that is, 

z+ W ' /  Wc 
fo~ e - zx/W~ [F(,u + 1)] 2 dx (a6) 

[ r ( ~ ) ]  ~ (~ + x ) ~ -  ~ +~ 

Therefore 

U ~  = ~, \ ~ + w ' /  
(A7) 

hence the desired result [Eq. (61) of the main text] by using Eqs. (A1) 
and (A2). 
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